\square

$2^{\text {nd }}$ Semester Back Examination 2017-18 BASIC ELECTRONICS

BRANCH : AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH,
MARINE, MECH, METTA, METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE Time : 3 Hours
Max Marks: 70
Q.CODE: C1179

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.

Q1 Answer the following questions:
a) What is the meaning of CMRR of an Op-amp?
b) Write down the advantages of a negative feedback amplifier.
c) Derive the expression for collector current for a CE transistor.
d) The gain of a certain amplifier is 30 dB . Express it numerically.
e) Write down the four applications of a diode.
f) Realize a NOR gate from NAND gate.
g) Convert the decimal number -32 to its equivalent and 2's complement form.
h) How BJT acts as a switch?
i) State the characteristics of an ideal op-amp.
j) Draw the block diagram of a 8X1 MUX.

Q2
a) Explain the operation of a p-n junction diode with V-I characteristics.
b) Explain the operation of Full-wave Rectifier (Center Tapped Type) with inputoutput waveforms.

Q3 a) Draw circuits for both inverting and non-inverting amplifier using op-amp. Derive the expression for the gain of an inverting amplifier.
b) Draw the block diagram of function generator and explain its operation.

Q4 a) What are the conditions of oscillation? Derive the expression of frequency of oscillation and also the condition of oscillation in a RC phase shift oscillator.
b) What is the input impendence of an ideal CRO? Why? Explain CRO as a voltmeter.

Q5 a) The open loop gain of an amplifier changes by 5%. If 10 dB negative feedback is applied, calculate percentage change of the closed loop gain?
b) What is active, saturation and cut-off region of a transistor? Explain with necessary diagram.

Q6 a) Implement the following function using NOR gate only
$F(A, B, C, D)=(A+C)(B+D)$.
b) Draw the physical structure, drain characteristics, transfer characteristics and circuit symbol of an n-channel depletion type MOSFET.

Q7 A crystal diode having an internal resistance $r_{i}=10 \Omega$ is used for center tapped full wave rectification. If the applied voltage is $V=50 \sin (\pi t)$ and the load resistance is $R_{L}=1 K \Omega$, determine the followings
i) Draw the input and output voltage and current waveforms
ii) The efficiency of the circuit.
iii) The ripple factor.

Q8 Write short answer on any TWO :
a) CRT
b) SR Flip-Flop
c) Zener diode as voltage regulator
d) Static and Dynamic Memories

