

REGISTRATION NUMBER

SRINIX COLLEGE OF ENGINEERING

2nd INTERNAL EXAMINATION-2020

Subject-FMHM

Semester-3rd

Branch-CIVIL

Time-

Full Mark-

ANSWER ANY TEN QUESTIONS (PART-A)

[2X10]

[5×4]

- 1) (a) Fluids which do not follow the linear relationship between shear rate of deformation are termed as Fluids.
 - (b) The manometers are suitable for comparatively..... pressure.
 - (c) An ice cube is floating in glass of water as the cube melts the water level.....
 - (d) A..... is an imaginary line within the flow so that the tangent at any point on it indicates the velocity at that point.
 - (e) Write down the formula to calculate the discharge of venturimeter.
 - $(f) \;\; \mbox{Surface tension increases with}...... \mbox{In temperature}.$
 - (g) Equation of continuity based on the principle of conservation of $\ldots \ldots$
 - $(h)\;$ The Renoylds no for flow of oil in a certain pipe is 640. Determine the Darcy-Weisbach factor f for this flow.
 - (i) Write down the formula to calculate the loss of head at entrance of pipe.
 - (j) Define equivalent of pipe.
 - (k) Differentiate between ideal fluid and real fluid.
 - (1) The weight per unit volume of liquid at standard temperature and pressure is called as.....

ANSWER ANY FOUR QUESTIONS (PART-B)

- 2) Discuss with a neat diagram showing various positions of G, B and M for different stability conditions for floating and submerged body.
- 3) Write a short note of the following
 - a) Fluid classification
 - b) Flow net
- 4) The velocity components in a two dimensional flow are U=y³+6x-3x²y V=3xy²-6y-x Check whether the flow satisfies continuity and irrotationality.
- 5) Explain the main parts of centrifugal pump.

6) Write a short note on pitot tube.

ANSWER ANY TWO QUESTIONS (PART-C) [10×2]

- 7) Two large fixed parallel planes are 12 mm apart. The space between the surfaces is filled with oil of viscosity 0.972 Ns/m². A flat thin plate 0.25m² area moves through the oil at a velocity of 0.3m/s. Calculate the drag force
 - a) When the plate is equidistant from both the planes.
 - b) When the thin plate is at a distance 4mm from both the planes.
- 8) The velocity potential function (Φ) is given by an expression

$$\Phi = \frac{-xy^3}{3} - x^2 + \frac{x^3y}{3} + y^2$$

- a) Find the velocity components in x and y direction .
- b) Show that Φ represents a possible case of flow.
- 9) Water is flowing through a pipe having 300 mm and 200 mm at the bottom and upper end respectively. The intensity of pressure at the bottom end is 24.525 N/cm² and the pressure at the upper end is 9.81N/cm². Determine the difference in datum head if the rate of flow through pipe is 40 lit/sec.