Srinix College of Engineering, Balasore
Department of Computer Science & Engg.

Basic Concept of Region Filling Algorithm in Computer
Graphics
Prepared by
Krishna Bera
Asst. Professor
CSE dept
Email: krishnaberall@gmail.com

Region Filling

» Seed Fill Approaches
> 2 algorithms: Boundary Fill and Flood Fill
- works at the pixel level
> suitable for interactive painting apllications

 Scan line Fill Approaches
- works at the polygon level
> better performance

Seed Fill Algorithms: Connectedness

e 4-connected region: From a given pixel, the region
that you can get to by a series of 4 way moves (N, S,
E and W)

e 8-connected region: From a given pixel, the region
that you can get to by a series of 8 way moves (N, S,
E, W, NE, NW, SE, and SW)

o Lo o
@oé L JOX _
@ A X

4-connected 8-connected

Boundary Fill Algorithm

 Start at a point inside a region

* Paint the interior outward to the edge

* The edge must be specified in a single color
¢ Fill the 4-connected or 8-connected region
* 4-connected fill is faster, but can have problem:s:

 40l0] _
0000

Boundary Fill Algorithm (cont.)

void BoundaryFill4(int x, inty,

{

Int current;
current = ReadPixel(Xx, y);
if(current !'= edgecolor && current != newcolor)

{

Bound
Boung
Bounc

Bounc

aryFi
aryFi
aryFi
aryFi

color newcolor, color edgecolor)

4(x+1, y, newcolor, edgecolor);
4(x-1, y, newcolor, edgecolor);
4(x, y+1, newcolor, edgecolor);
4(x, y-1, newcolor, edgecolor);

Flood Fill Algorithm

e Used when an area defined with multiple
color boundaries

e Start at a point inside a region

* Replace a specified interior color (old
color) with fill color

e Fill the 4-connected or 8-connected
region until all interior points being
replaced

Flood Fill Algorithm (cont.)

void FloodFill4(int x, int y, color newcolor, color oldColor)

{
if(ReadPixel(x, y) == oldColor)

{
FloodFill4(x+1, y, newcolor, oldColor);
FloodFill4(x-1, y, newcolor, oldColor);
FloodFill4(x, y+1, newcolor, oldColor);
FloodFill4(x, y-1, newcolor, oldColor);
i

Polygon Types

I simple convex, simple concave, non-simple (self-
intersecting)

I want no holes, no intersections (line crossings)
I rectangles and triangles always simple convex

RS =

simple simple non-simpla
n:nn'-.-va:-: concave {self—lntersectlun}

B s
W< A

Convex, Concave, Degenerate

I Convex polygons are preferable to concave

I Polygon is convex if for any two points inside
polygon, the line segment joining these two points is
also inside.

— —_— - — = i
- P_,a*"'
T, ot
H-HH'H-,_ L
o o
T o
S

I Degeneracies

4
! 31 4

M : 3 03 12
0 0 5 012 3

Polygon Representation

I Polygon Representation
I ordered list of vertices
I avoids redundant storage and computations
I associate other information with vertices
| colors, normals, textures

faces vertex list
+vertex lis=t # x,¥9,Zz
o o0,2,3,1 o oO0,1,1
i 1,3,.,7.5 i 1,1.1
2 5,7,6,4 2 0,0,1
3 4,&5,.2,.0 3 i,0,1
g &£, 0.1,5 & 0,1.0
E 2,6.7,.3 5 1,1,0
& 0,0,0
T 1,0,0

Scanline Fill Algorithm

* Intersect scanline with polygon edges
* Fill between pairs of intersections

 Basic algorithm:
For y = ymin to ymax
1) intersect scanline y with each edge
2) sort intersections by increasing x [pO,p1,p2,p3]
3) fill pairwise (p0->pl, p2->p3,...)

Spacial Handling

* Make sure we only fill the interior pixels

Define interior:

For a given pair of intersection points
(Xi,Y), (X},Y)

-> Fill ceilling(Xi) to floor(Xj)

important when we have polygons adjacent
to each other.

Spacial Handling (cont.)

* Intersection has an integer X coordinate

->if Xi is integer, we define it to be
interior

->if X] is integer, we define it to be
exterior

(so don't fill)

Spacial Handling (cont.)

* Intersection is an edge end point

ymax
—W\
scanline

pO p1

Case 1

ymin
Intersection points: (p0, p1, p2) ??7?
->(p0,p1,p1,p2) so we can still fill pairwise
->In fact, if we compute the intersection of the scanline with

edge el and e2 separately, we will get the intersection point
pl twice. Keep both of the p1.

Spacial Handling (cont.)

Case 2

However, in this case we don’t want to count p1 twice
(pO,p1,p1,p2,p3), otherwise we will fill pixels between p1 and
p2, which is wrong.

Spacial Handling (cont.)

Summary: If the intersection is the ymin of the edge’s
endpoint, count it. Otherwise, don't.

yn*a

scanlme Yes, count

p1 for both
y el and e2
ymin

p1 52/\/53 No, don't count
p1 for the edge e2

References:

» Computer Graphics: Principles and Practice in C, by J. D. Foley, A.
Van Dam, S. K. Feiner, J. F. Hughes. Addison-Wesley, 2nd ed.

o Essential Mathematics for Computer Graphics, fast, by John Vince.
Springer.

