
Srinix College of Engineering, Balasore
Department of Computer Science & Engg.

Basic Concept of Region Filling Algorithm in Computer 

Graphics

Prepared by

Krishna Bera

Asst. Professor 

CSE dept

Email: krishnabera11@gmail.com

1



Region Filling

 Seed Fill Approaches 
◦ 2 algorithms: Boundary Fill and Flood Fill

◦ works at the pixel level

◦ suitable for interactive painting apllications

 Scan line Fill Approaches
◦ works at the polygon level

◦ better performance

2



Seed Fill Algorithms: Connectedness

3

• 4-connected region: From a given pixel, the region 
that you can get to by a series of 4 way moves (N, S, 
E and W)

• 8-connected region: From a given pixel, the region 
that you can get to by a series of 8 way moves (N, S, 
E, W, NE, NW, SE, and SW) 

4-connected 8-connected



Boundary Fill Algorithm

 Start at a point inside a region

 Paint the interior outward to the edge

 The edge must be specified in a single color

 Fill the 4-connected or 8-connected region

 4-connected fill is faster, but can have problems:

4



Boundary Fill Algorithm (cont.)

5

void BoundaryFill4(int x, int y, 
color newcolor, color edgecolor)

{

int current;
current = ReadPixel(x, y);
if(current != edgecolor && current != newcolor)
{

BoundaryFill4(x+1, y, newcolor, edgecolor);
BoundaryFill4(x-1, y, newcolor, edgecolor);
BoundaryFill4(x, y+1, newcolor, edgecolor);
BoundaryFill4(x, y-1, newcolor, edgecolor);

}

}



Flood Fill Algorithm

 Used when an area defined with multiple 

color boundaries

 Start at a point inside a region

 Replace a specified interior color (old 

color) with fill color

 Fill the 4-connected or 8-connected 

region until all interior points being 

replaced

6



Flood Fill Algorithm (cont.)

7

void FloodFill4(int x, int y, color newcolor, color oldColor)
{

if(ReadPixel(x, y) == oldColor)
{

FloodFill4(x+1, y, newcolor, oldColor);
FloodFill4(x-1, y, newcolor, oldColor);
FloodFill4(x, y+1, newcolor, oldColor);
FloodFill4(x, y-1, newcolor, oldColor);

}

}



Polygon Types

8



Convex, Concave, Degenerate

9



Polygon Representation

10



Scanline Fill Algorithm
 Intersect scanline with polygon edges

 Fill between pairs of intersections

 Basic algorithm:
For y = ymin to ymax
1) intersect scanline y with each edge
2) sort intersections by increasing x [p0,p1,p2,p3]
3) fill pairwise (p0->p1, p2->p3, …)

11



Spacial Handling

 Make sure we only fill the interior pixels

Define interior:

For a given pair of intersection points
(Xi, Y), (Xj, Y)

-> Fill ceilling(Xi) to floor(Xj)

important when we have polygons adjacent
to each other.

12



Spacial Handling (cont.)

 Intersection has an integer X coordinate

->if Xi is integer, we define it to be 

interior

->if Xj is integer, we define it to be 

exterior

(so don’t fill)

13



Spacial Handling (cont.)

 Intersection is an edge end point

14

Intersection points: (p0, p1, p2) ???

->(p0,p1,p1,p2) so we can still fill pairwise

->In fact, if we compute the intersection of the scanline with 
edge e1 and e2 separately, we will get the intersection point 
p1 twice. Keep both of the p1.

Case 1



Spacial Handling (cont.)

15

However, in this case we don’t want to count p1 twice 
(p0,p1,p1,p2,p3), otherwise we will fill pixels between p1 and 
p2, which is wrong.

Case 2



Spacial Handling (cont.)

16

Summary: If the intersection is the ymin of the edge’s 
endpoint, count it. Otherwise, don’t.



References:

 Computer Graphics: Principles and Practice in C, by J. D. Foley, A. 

Van Dam, S. K. Feiner, J. F. Hughes. Addison-Wesley, 2nd ed.

 Essential Mathematics for Computer Graphics, fast, by John Vince. 

Springer.

17


