| Regis | stra | ation No : | | | | | | | | | | | |-------|------|---|--|---|---|---|---------------------------------|----------------------------|----------------------|--------|----------------|--------------------| | Total | Nu | mber of Pag | es : 02 | | | | | | | | ı | B.Tech
HSSM3302 | | | AS | CH : AEIE, AI
SHION, FAT,
Answer Ques
The | OPTI
UTO, CHE
IEE, IT, IT
MINERA | TE, MANI
L, MININ
T
M
Q
1 which i | ON IN EN
_, CSE,
UFAC, I
IG, MME
ime : 3
ax Mark
.CODE
is comp | NGINEE
ECE, E
MANUT
E, PLAS
Hours
(s : 70
: F269
pulsory | ERING
EEE, I
ECH
STIC, | G
EIE, I
, MA
TEX | ELEC
RINE
TILE | , ME0 | AL, E
CH, M | NV, ETC,
ETTA, | |
 | , | Answer the f
What is slack
Write Degene
What is Basic
Write short no
Define convey
What is basic
What is stepp
What is sensi
What is Intege
Define an uns | variable? erate soluti feasible solute on Tran x set and concept ooling stone itivity analy er program | on? colution? convex fur f Kuhn Tu method? rsis? convey | n problen
action?
cker Cor
blem? | | | | | | | (2 x 10) | | Q2 a | a) | Use Graphica
Maximize z= : | $x_1 + x_2 = s$
$x_1 + x_2 = s$ | subject to t | he const | raints: | | | | | | (5) | | i | b) | Use Two Pha | se Simple:
Maximize
Subject t
4 x ₁ + 6
3 x ₁ - 6 > | x method
$z = 2x_1 + 3x_2 + 3x_3 + 3x_3 + 3x_3 + 3x_3 + 3x_3 + 3x_3 + 3x_2 + 5x_3$ | to solve
$x_2 + x_3$
straints:
≤ 8
≤ 1 | the L.P. | P. : | | | | | (5) | | Q3 a | a) | Solve the Zer
max z =
subject to | $x_1 + 2 x_2$
$x_1 + 2 x_2$
$2x_1 - 3x_2$ | + X ₃ | | 1 | | | | | | (5) | | i | b) | &
Solve the N
Maxim | nize Z= (x | rogrammir
$(x_1)^2 + (x_2)^2$
o the consideration = 10 | + 3x ₁ + | - | Lagra | nge's | multi | pliers | | (5) | (5) (5) (5) (10) (10) Q4 a) Use DUAL Simplex method to solve the L.P.P.: Maximize $Z = -3 x_1 - 2 x_2$ Subject to the constraints: $$x_1 + x_2 \ge 1$$ $2x_1 + 3x_2 \ge 2$ $x_1, x_2 \ge 0$ b) Solve by Fibonacci Search method Minimize $f(x) = x^2 + 54/x$ in the interval (0,5] Q5 a) Solve by Projected Gradient method (5) Minimize $$f(X) = x^2 + 3(x_2)^2$$ starting initial point (6,3) where $X = x_1 i + x_2 j$ b) Solve the Dynamic Programming problem Minimize $$Z = Y_1^2 + Y_2^2 + Y_3^2$$ Subject to $Y_1 + Y_2 + Y_3 = 15$ & Y_i≥0 Q6 Solve by Branch and Bound method Minimize $Z = 4 X_1 + 3 X_2$ Subject to $5 X_1 + 3 X_2 \ge 30$ $X_1 \le 4$, $X_2 \le 6$ & $X_i \ge 0$ & integers. FIND THE OPTIMAL SOLUTION BY MODI METHOD Q7 | ı | THE OF HIVIAL SOLUTION BY IVIC | | | | | | | | | | |---|--------------------------------|-----|-----|-----|-----|--|--|--|--|--| | | 11 | 13 | 17 | 14 | 250 | | | | | | | | 16 | 18 | 14 | 10 | 300 | | | | | | | | 21 | 24 | 13 | 10 | 400 | | | | | | | | 200 | 225 | 275 | 250 | 950 | | | | | | Q8 Write short answer on any TWO: (5×2) - a) Quadratic programming problem - b) Genetic Algorithm - c) Nonlinear programming problem