Regis	stra	ation No :										
Total	Nu	mber of Pag	es : 02								ı	B.Tech HSSM3302
	AS	CH : AEIE, AI SHION, FAT, Answer Ques The	OPTI UTO, CHE IEE, IT, IT MINERA	TE, MANI L, MININ T M Q 1 which i	ON IN EN _, CSE, UFAC, I IG, MME ime : 3 ax Mark .CODE is comp	NGINEE ECE, E MANUT E, PLAS Hours (s : 70 : F269 pulsory	ERING EEE, I ECH STIC,	G EIE, I , MA TEX	ELEC RINE TILE	, ME0	AL, E CH, M	NV, ETC, ETTA,
 	,	Answer the f What is slack Write Degene What is Basic Write short no Define convey What is basic What is stepp What is sensi What is Intege Define an uns	variable? erate soluti feasible solute on Tran x set and concept ooling stone itivity analy er program	on? colution? convex fur f Kuhn Tu method? rsis? convey	n problen action? cker Cor blem?							(2 x 10)
Q2 a	a)	Use Graphica Maximize z= :	$x_1 + x_2 = s$ $x_1 + x_2 = s$	subject to t	he const	raints:						(5)
i	b)	Use Two Pha	se Simple: Maximize Subject t 4 x ₁ + 6 3 x ₁ - 6 >	x method $z = 2x_1 + 3x_2 + 3x_3 + 3x_3 + 3x_3 + 3x_3 + 3x_3 + 3x_3 + 3x_2 + 5x_3$	to solve $x_2 + x_3$ straints: ≤ 8 ≤ 1	the L.P.	P. :					(5)
Q3 a	a)	Solve the Zer max z = subject to	$x_1 + 2 x_2$ $x_1 + 2 x_2$ $2x_1 - 3x_2$	+ X ₃		1						(5)
i	b)	& Solve the N Maxim	nize Z= (x	rogrammir $(x_1)^2 + (x_2)^2$ o the consideration = 10	+ 3x ₁ +	-	Lagra	nge's	multi	pliers		(5)

(5)

(5)

(5)

(10)

(10)

Q4 a) Use DUAL Simplex method to solve the L.P.P.:

Maximize $Z = -3 x_1 - 2 x_2$

Subject to the constraints:

$$x_1 + x_2 \ge 1$$

 $2x_1 + 3x_2 \ge 2$
 $x_1, x_2 \ge 0$

b) Solve by Fibonacci Search method

Minimize $f(x) = x^2 + 54/x$ in the interval (0,5]

Q5 a) Solve by Projected Gradient method (5)

Minimize
$$f(X) = x^2 + 3(x_2)^2$$
 starting initial point (6,3)

where $X = x_1 i + x_2 j$

b) Solve the Dynamic Programming problem

Minimize
$$Z = Y_1^2 + Y_2^2 + Y_3^2$$

Subject to $Y_1 + Y_2 + Y_3 = 15$

& Y_i≥0

Q6 Solve by Branch and Bound method

Minimize $Z = 4 X_1 + 3 X_2$

Subject to $5 X_1 + 3 X_2 \ge 30$

 $X_1 \le 4$, $X_2 \le 6$ & $X_i \ge 0$ & integers.

FIND THE OPTIMAL SOLUTION BY MODI METHOD Q7

ı	THE OF HIVIAL SOLUTION BY IVIC									
	11	13	17	14	250					
	16	18	14	10	300					
	21	24	13	10	400					
	200	225	275	250	950					

Q8 Write short answer on any TWO: (5×2)

- a) Quadratic programming problem
- b) Genetic Algorithm
- c) Nonlinear programming problem