SRINIX COLLEGE OF ENGINEERING, BALASORE

DEPARTMENT OF
COMPUTER SCIENCE \& ENGINEERING

ASSIGNMENT ON

FORMAL LANGUAGE IAND AUTOMATA THEORY

ASSIGNMENT- I

1. a) Consider the below finite automata and check the strings are accepted or not

States (Q)	Input Alphabtes	
	0	1
$\rightarrow \mathrm{q} 0$	q 1	q 3
q 1	q 0	q 2
$(\mathrm{q} 2)$	q 3	q 1
q 3	q 2	q 0

(i) 1110
(ii) 0001
(iii) 1010
b) Define NFA. What are the differences between DFA \& NFA?
[L2,2+2+2M]
2. Convert the following NFA with ε moves to DFA without ε moves.

3. Minimize the following finite automata.

4. Convert the following Mealy machine into its equivalent Moore machine.

Present State	$\mathrm{I} / \mathrm{P}=0$		$\mathrm{I} / \mathrm{P}=1$	
	Next State	O/P	Next State	O/P
\rightarrow A	C	0	B	0
B	A	1	D	0
C	B	1	A	1
D	D	1	C	0

5. a) Write about relations on sets.
[L1,2M]
b) Define Grammar? What are the tuples?
[L1,2M]
c) Define Finite Automaton.
[L2,2M]
d) Show that $\left(0^{*} 1^{*}\right)^{*}=(0+1)^{*}$.
[L3,2M]
e) Define Mealy machine and Moore machine.
6. a) Discuss Chomsky's Hierarchy of formal languages.
[L1,5M]
b) Explain briefly about DFA and NFA?
[L1,5M]
7. a) Define Moore machine? Construct Mealy machine corresponding to Moore machine?
[L2,5M]

States (Q)	Next States		Output
	$\mathrm{I} / \mathrm{P}=1$		
q 1	q 1	q 2	0
q 2	q 1	q 3	0
q 3	q 1	q 3	1

b) Prove i) $\mathrm{R}=(1+00 * 1)+(1+00 * 1)(0+10 * 1) *(0+10 * 1)^{*}=0 * 1(0+10 * 1)^{*}$
ii) $\mathrm{R}=\mathrm{\epsilon}+1^{*}(011)^{*}\left(1^{*}(011)^{*}\right)^{*}=(1+011)^{*}$
[L3, 21/2+21/2M]
8. Write down procedure for Myhill- Nerode theorem with a given example.
('*' means final states).
[L2, 10M]

Present State	Next State	
	$\mathrm{I} / \mathrm{P}=\mathrm{a}$	$\mathrm{I} / \mathrm{P}=\mathrm{b}$
$\longrightarrow \mathrm{A}$	B	F
B	A	F
C	G	A
D	H	B
E	A	G
*F	H	C
*G	A	D
${ }^{*} \mathrm{H}$	A	C

9. a) Define relations on set and explain its property with an example
b) Define NFA and DFA. Construct DFA for the given NFA

	0	Next state
$\rightarrow q 0$	$q 0, q 1$	$q 0$
$q 1$	$q 2$	$q 1$
$q 2$	$q 3$	$q 3$
$q 3$	-	$q 2$

10. a) List out the identities of Regular expression.
b) From the identities of RE, prove that
i) $10+(1010)^{*}\left[\wedge+(1010)^{*}\right]=10+(1010) *$ [L3,2M]
ii) $\left(0+011^{*}\right)+\left(0+011^{*}\right)\left(01+0100^{*}\right)\left(01+0100^{*}\right)^{*}=01^{*}\left(010^{*}\right)^{*}$ [L3,2M]
c) Define finite automata? Explain detail about the tuples.
[L2,2M]

ASSIGNMENT- II

1. a) Construct an equivalent FA for the given regular expression $(0+1) *(00+11)(0+1) *$
[L1,5M]
b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.
2. Explain about Arden's theorem, for constructing the RE from a FA with an example.
[L1,10M]

3. a) List out the identities of Regular expression.
[L1,4M]
b) From the identities of RE, prove that
[L2,6M]
i) $10+(1010) *[\wedge+(1010) *]=10+(1010)^{*}$
ii) $\left(0+011^{*}\right)+\left(0+011^{*}\right)\left(01+0100^{*}\right)\left(01+0100^{*}\right)^{*}=01^{*}\left(010^{*}\right)^{*}$
4. a) Consider the below finite automata and check the strings are accepted or not
[L3,6M]

States (Q)	Input Alphabtes	
	0	1
$\rightarrow \mathrm{q} 0$	q 1	q 3
q 1	q 0	q 2
q 2$)$	q 3	q 1
q 3	q 2	q 0

(i) 1110
(ii) 0001
(iii) 1010
b) Construct an equivalent FA for the given regular expression $(0+1) *(00+11)(0+1)^{*}$
[L3,4M]
5. a) Prove $\mathrm{R}=\mathrm{Q}+\mathrm{RP}$ has unique solution, $\mathrm{R}=\mathrm{QP}^{*}$
b) Explain about the Arden' theorem, for constructing the RE from a FA with an example [L1,7M]

6. Explain how equivalence between two FA is verified with an example.
7. Prove that the language $L=\left\{a^{n} b^{n} \mid n>=1\right\}$ is not regular using pumping lemma with procedure.
8. a) Construct an equivalent FA for the given regular expression $(0+1) *(00+11)(0+1)^{*}[\mathrm{~L} 3,5 \mathrm{M}]$
b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.
[L3,5M]

9. a)Write the process of equivalence two FA's? Find whether the equivalence two FA's or not.[L3,7M]

(a)

(b)
b) List out the identities of Regular expression.
10. Prove that the language $L=\left\{a^{n} b^{n} c^{n} \mid n>=1\right\}$ is not regular using pumping lemma.

ASSIGNMENT- III

1. Write the procedure and Eliminate left recursion from the following Grammar
[L2,10]

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} / \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) / \mathrm{id}
\end{aligned}
$$

2. a) Explain about derivation and parse trees? Construct the string 0100110 from the Leftmost and Rightmost derivation.

$$
\begin{align*}
& \mathrm{S} \rightarrow 0 \mathrm{~S} / 1 \mathrm{AA} \\
& \mathrm{~A} \rightarrow 0 / 1 \mathrm{~A} / 0 \mathrm{~B} \\
& \mathrm{~B} \rightarrow 1 / 0 \mathrm{BB} \tag{L2,5M}
\end{align*}
$$

b) Find the parse tree for generating the string 11001010 from the given grammar.[L2,5M]
$\mathrm{S} \rightarrow 1 \mathrm{~B} / 0 \mathrm{~A}$

$$
\mathrm{A} \rightarrow 1 / 1 \mathrm{~S} / 0 \mathrm{AA}
$$

$\mathrm{B} \rightarrow 0 / 0 \mathrm{~S} / 1 \mathrm{BB}$
3. a) Define Ambiguous grammar.
[L2,4M]
b) Remove Left recursion from the grammar $\mathrm{S} \rightarrow \mathrm{Sab} / \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{Tcd} / \mathrm{F}$
$\mathrm{F} \rightarrow \mathrm{Fa} / \mathrm{G}$
[L2, 6M]
4.
a) Explain Left recursion and Left factoring.
[L3,4M]
b) Perform left factor from the grammar $\mathrm{A} \rightarrow \mathrm{abB} / \mathrm{aB} / \mathrm{cdg} / \mathrm{cdeB} / \mathrm{cdfB}$

$$
[\mathrm{L} 3,6 \mathrm{M}]
$$

5. Simplify the following context free grammar. (Here, Λ stands for epsilon (ϵ)). [L4,10M]

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{TU} \mid \mathrm{V} \\
& \mathrm{~T} \rightarrow \mathrm{aTb} \mid \Lambda \\
& \mathrm{U} \rightarrow \mathrm{cU} \mid \Lambda \\
& \mathrm{V} \rightarrow \mathrm{aVc} \mid \mathrm{W} \\
& \mathrm{~W} \rightarrow \mathrm{bW} \mid \Lambda
\end{aligned}
$$

6. Convert the following grammar into Greibach normal form.
[L4,10M]
$\mathrm{S} \rightarrow \mathrm{AA} / \mathrm{a}$
$\mathrm{A} \rightarrow \mathrm{SS} / \mathrm{b}$
7. a) Write the process for Convert the grammar into CNF?
b) Convert the following grammar into CNF.

$$
[\mathrm{L} 3,6 \mathrm{M}]
$$

$$
\mathrm{S} \rightarrow \mathrm{bA} / \mathrm{aB} \quad \mathrm{~A} \rightarrow \mathrm{bAA} / \mathrm{aS} / \mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{aBB} / \mathrm{bS} / \mathrm{a} .
$$

8. a) What is linear grammar? Explain in detail with example.
b) Explain the closure properties of context free languages.
[L3, 6M]
9. a)Remove the unit production from the grammar
$\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{E}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{b}, \mathrm{E} \rightarrow \mathrm{a}$ [L3,4M]
b) Remove ϵ productions from the grammar

$$
\mathrm{S} \rightarrow \mathrm{ABaC}, \mathrm{~A} \rightarrow \mathrm{BC}, \mathrm{~B} \rightarrow \mathrm{~b} / \epsilon, \mathrm{C} \rightarrow \mathrm{D} / \epsilon, \mathrm{D} \rightarrow \mathrm{~d}
$$

10. a) Write about Decision problems for CFLs with example?
b) What is the differentiate between CFG and Regular Language?

$$
[\mathrm{L} 3,4 \mathrm{M}]
$$

ASSIGNMENT-IV

1. a) Construct a PDA which recognizes all strings that contain equal number of 0 's and 1's.
b) A PDA is more powerful than a finite automaton. Justify this statement.
2. Construct PDA from the following Grammar.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aB} \\
& \mathrm{~B} \rightarrow \mathrm{bA} / \mathrm{b} \\
& \mathrm{~A} \rightarrow \mathrm{aB}
\end{aligned}
$$

3. Construct PDA from the following Grammar
$\mathrm{S} \rightarrow 0 \mathrm{BB}$
B $\rightarrow 0 \mathrm{~S} / 1 \mathrm{~S} / 0$
[L2, 10M]
Show an ID for the string 010000 is generated for PDA?
4. Construct a CFG equivalent to the following PDA.
$\mathrm{PDA}=\{(\mathrm{p}, \mathrm{q}),(0,1), \delta, \mathrm{p}, \mathrm{q},(\mathrm{Z}, \mathrm{X})\}$, where p is initial state, q is final state.
δ is defined as $\delta(\mathrm{p}, 0, \mathrm{Z})=(\mathrm{p}, \mathrm{XZ}), \delta(\mathrm{p}, 0, \mathrm{X})=(\mathrm{p}, \mathrm{XX}), \delta(\mathrm{p}, 1, \mathrm{X})=(\mathrm{q}, \mathrm{\epsilon}), \delta(\mathrm{p}, 1, \mathrm{X})=(\mathrm{p}, \epsilon), \delta(\mathrm{p}, \epsilon, \mathrm{Z})=(\mathrm{p}, \epsilon)$.
[L3,10M]
5. a) Construct an equivalent PDA for the following CFG
[L3,7M]

$$
\begin{aligned}
& S \rightarrow a A B \mid b B A \\
& A \rightarrow b S \mid a \\
& B \rightarrow a S \mid b
\end{aligned}
$$

b) Explain the informal introduction and formal definition of PDA.
6. a) Define Instantaneous description (ID) in PDA.
b) Explain about the graphical notation of PDA.
7. a) Write the process for convert PDA into an equivalent CFG.
b) Convert the following PDA into an equivalent CFG.

```
\(\delta\left(\mathrm{q}_{0}, \mathrm{a}_{0}, \mathrm{z}_{0}\right) \rightarrow\left(\mathrm{q}_{1}, \mathrm{z}_{1} \mathrm{Z}_{0}\right)\)
\(\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{z}_{0}\right) \rightarrow\left(\mathrm{q}_{1}, \mathrm{Z}_{2} \mathrm{Z}_{0}\right)\)
\(\delta\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{z}_{1}\right) \rightarrow\left(\mathrm{q}_{1}, \mathrm{z}_{1} \mathrm{z}_{1}\right)\)
\(\delta\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{z}_{1}\right) \rightarrow\left(\mathrm{q}_{1}, \lambda\right)\)
\(\delta\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{z}_{2}\right) \rightarrow\left(\mathrm{q}_{1}, \mathrm{z}_{2} \mathrm{z}_{2}\right)\)
\(\delta\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{z}_{2}\right) \rightarrow\left(\mathrm{q}_{1}, \lambda\right)\)
\(\delta\left(\mathrm{q}_{1}, \lambda, \mathrm{z}_{2}\right) \rightarrow\left(\mathrm{q}_{1}, \lambda\right) / /\) accepted by the empty stack.
```

8. a) Define push down automata? Explain acceptance of PDA with empty stack. [L2,5M]
b) Define Instantaneous description (ID) in PDA.
9. a) Explain about the graphical notation of PDA.
b) Construct an equivalent PDA for the following CFG.
$\mathrm{S} \rightarrow \mathrm{aAB} \mid \mathrm{bBA}$
$\mathrm{A} \rightarrow \mathrm{bS} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{aS} \mid \mathrm{b}$.
10. Explain Deterministic Push down Automata with example?

ASSIGNMENT- V

1. Construct a Turing machine which multiplies two unary numbers.
[L1,10M]
2. Construct a Turing machine for Language $\mathrm{L}=\mathrm{a}^{\mathrm{n}}{ }^{\mathrm{n}}$, , where $\mathrm{n}>0$ [L1,10M]
3. Construct a Turing machine that recognizes the language $L=\left\{a^{n} b^{n}, n>1\right\}$. Show an ID for the string 'aabb' with tape symbols.
4. Explain conversion of regular Expression to TM with example.
5. Explain the various types of Turing machine. [L3,10M]
6. Explain Universal turing machine [L3,10M]
7. a)Design a multi head Turing Machine for checking whether a binary string is a palindrome or not. Show the ID for 1001. [L3,6M]
b) Write about Universal TM.
8. Explain in detail about variations of the TM? [L3,10M]
9. Construct a Turing machine that recognizes the language $a^{n} b^{n} c^{n}$. [L3,10M]
10. a) Define PCP. Verify whether the following lists have a PCP solution. [L3,7M]

$$
\binom{a b a b}{a b a b a a a},\binom{a a a b b b}{b b},\binom{a a b}{b a b b},\binom{b a}{b a a},\binom{a b}{b a},\binom{a a}{a} .
$$

b) Describe linear bounded automaton.

