SRINIX COLLEGE OF ENGINEERING, BALASORE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ASSIGNMENT ON
FORMAL LANGUAGE AND AUTOMATA THEORY

FORMAL LANGUAGE IAND AUTOMATA THEORY

ASSIGNMENT-I

1. a) Consider the below finite automata and check the strings are accepted or not

States	Input Alphabtes		
(Q)	0	1	
-> q0	q1	q3	
q1	q0	q2	
(q2)	q3	q1	
q3	q2	q0	

(i) 1110

(ii) 0001

(iii) 1010

[L2,2+2+2M]

b) Define NFA. What are the differences between DFA & NFA?

[L2,4M]

2. Convert the following NFA with ϵ moves to DFA without ϵ moves.

[L2,10M]

3. Minimize the following finite automata.

[L3,10M]

4. Convert the following Mealy machine into its equivalent Moore machine. [L2,10M]

Present State	I/P=0		I/P=1	
State	Next State	O/P	Next State	O/P
\rightarrow A	С	0	В	0
В	A	1	D	0
С	В	1	A	1
D	D	1	C	0

5. a) Write about relations on sets. [L1,2M]
b) Define Grammar? What are the tuples? [L1,2M]
c) Define Finite Automaton. [L2,2M]
d) Show that (0*1*)* = (0+1)*. [L3,2M]
e) Define Mealy machine and Moore machine. [L2,2M]
6. a) Discuss Chomsky's Hierarchy of formal languages. [L1,5M]
b) Explain briefly about DFA and NFA? [L1,5M]

7. a) Define Moore machine? Construct Mealy machine corresponding to Moore machine?

[L2,5M]

States	Next States		Output
(Q)	I/P=0	I/P=1	Output
→ q1	q1	q2	0
q2	q1	q3	0
q3	q1	q3	1

b) Prove i)
$$R=(1+00*1) + (1+00*1) (0+10*1)* (0+10*1)* = 0*1(0+10*1)*$$

ii) $R=C+1*(011)*(1*(011)*)* = (1+011)*$ [L3, 21/2+21/2M]

8. Write down procedure for Myhill- Nerode theorem with a given example.

('*' means final states).

[L2, 10M]

	Next State		
Present State	I/P=a	I/P=b	
\rightarrow A	В	F	
В	A	F	
С	G	A	
D	Н	В	
Е	A	G	
*F	Н	С	
*G	A	D	
*H	A	С	

9. a) Define relations on set and explain its property with an example

b) Define NFA and DFA. Construct DFA for the given NFA

	Nex	Next state		
	0	1		
\rightarrow q0	q0,q1	q0		
q1	q2	q1		
q2	q 3	q3		
(q3)	-	q2		

10. a) List out the identities of Regular expression.

[L3,4M]

[L1,3M]

[L2,7M]

b) From the identities of RE, prove that

i) 10+(1010)*[^+(1010)*]=10+(1010)*

[L3,2M]

ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*

[L3,2M]

c) Define finite automata? Explain detail about the tuples.

[L2,2M]

ASSIGNMENT-II

- 1. a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L1,5M]
 - b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem. [Ll,5M]
- 2. Explain about Arden's theorem, for constructing the RE from a FA with an example. [L1,10M]

3. a) List out the identities of Regular expression.

[L1,4M]

b) From the identities of RE, prove that

[L2,6M]

- i) 10+(1010)*[^+(1010)*]=10+(1010)*
- ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*
- 4. a) Consider the below finite automata and check the strings are accepted or not

[L3,6M]

States	Input Alphabtes		
(Q)	0	1	
->q0	q1	q3	
q1	q0	q2	
(q2)	q3	q1	
q3	q2	q0	

- (i) 1110
- (ii) 0001
- (iii) 1010
- b) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)*
- [L3,4M]

5. a) Prove R=Q+RP has unique solution, R=QP*

- [L1,3M]
- b) Explain about the Arden' theorem, for constructing the RE from a FA with an example [L1,7M]

- 6. Explain how equivalence between two FA is verified with an example.
- [L2,10M]
- 7. Prove that the language $L=\{a^nb^n \mid n>=1\}$ is not regular using pumping lemma [L2,10M] with procedure.

8. a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L3,5M] b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.

[L3,5M]

9. a) Write the process of equivalence two FA's? Find whether the equivalence two FA's or not.[L3,7M]

b) List out the identities of Regular expression.

[L3,3M]

10. Prove that the language $L = \{a^nb^nc^n \mid n \ge 1\}$ is not regular using pumping lemma. [L3,10M]

ASSIGNMENT-III

1. Write the procedure and Eliminate left recursion from the following Grammar [L2,10] $E \rightarrow E + T/T$ $T \rightarrow T*F/F$ $F\rightarrow (E)/id$ 2. a) Explain about derivation and parse trees? Construct the string 0100110 from the Leftmost and Rightmost derivation. $S \rightarrow 0S/1AA$ $A \rightarrow 0/1A/0B$ $B \rightarrow 1/0BB$ [L2,5M]b) Find the parse tree for generating the string 11001010 from the given grammar. [L2,5M] $S \rightarrow 1B/0A$ $A \rightarrow 1/1S/0AA$ $B \rightarrow 0/0S/1BB$ 3. a) Define Ambiguous grammar. [L2,4M]b) Remove Left recursion from the grammar $S \rightarrow Sab/T$ $T \rightarrow Tcd/F$ F→Fa/G [L2, 6M] 4. a) Explain Left recursion and Left factoring. [L3,4M]b) Perform left factor from the grammar $A \rightarrow abB/aB/cdg/cdeB/cdfB$ [L3, 6M] Simplify the following context free grammar. (Here, Λ stands for epsilon (ϵ)). [L4,10M] 5. $S \rightarrow TU|V$ $T \rightarrow aTb | \Lambda$ U→cU| Λ $V \rightarrow aVc|W$ $W \rightarrow bW | \Lambda$ 6. Convert the following grammar into Greibach normal form. [L4,10M] $S \rightarrow AA/a$ $A \rightarrow SS/b$ 7. a) Write the process for Convert the grammar into CNF? [L3,4M]b) Convert the following grammar into CNF. [L3, 6M] S→bA/aB A→bAA/aS/a B→aBB/bS/a. a) What is linear grammar? Explain in detail with example. 8. [L3,4M]b) Explain the closure properties of context free languages. [L3, 6M] 9. a)Remove the unit production from the grammar $S \rightarrow AB, A \rightarrow E, B \rightarrow C, C \rightarrow D, D \rightarrow b, E \rightarrow a$ [L3,4M]b) Remove ϵ productions from the grammar $S \rightarrow ABaC$, $A \rightarrow BC$, $B \rightarrow b/\epsilon$, $C \rightarrow D/\epsilon$, $D \rightarrow d$ [L3, 6M]a) Write about Decision problems for CFLs with example? 10. [L3,5M]b) What is the differentiate between CFG and Regular Language? [L3, 4M]

ASSIGNMENT-IV

```
1. a) Construct a PDA which recognizes all strings that contain equal number
    of 0's and 1's.
                                                                                                  [L2, 6M]
    b) A PDA is more powerful than a finite automaton. Justify this statement.
                                                                                                  [L2, 4M]
2. Construct PDA from the following Grammar.
             S \rightarrow aB
              B \rightarrow bA/b
             A \rightarrow aB
                                                                                                  [L2, 10M]
3. Construct PDA from the following Grammar
    S→0BB
    B \rightarrow 0S/1S/0
                                                                                                  [L2, 10M]
    Show an ID for the string 010000 is generated for PDA?
4. Construct a CFG equivalent to the following PDA.
                                                                                                  [L2,10M]
    PDA=\{(p, q), (0, 1), \delta, p, q, (Z, X)\}, where p is initial state, q is final state.
    \delta is defined as \delta(p,0,Z)=(p,XZ), \delta(p,0,X)=(p,XX), \delta(p,1,X)=(q,\epsilon), \delta(p,1,X)=(p,\epsilon), \delta(p,\epsilon,Z)=(p,\epsilon).
                                                                                                  [L3,10M]
5. a) Construct an equivalent PDA for the following CFG
                                                                                                  [L3,7M]
             S→aAB | bBA
             A \rightarrow bS \mid a
             B \rightarrow aS \mid b
    b) Explain the informal introduction and formal definition of PDA.
                                                                                                  [L2, 3M]
6.
          a) Define Instantaneous description (ID) in PDA.
                                                                                                  [L2,5M]
    b) Explain about the graphical notation of PDA.
                                                                                                  [L2, 5M]
7.
          a) Write the process for convert PDA into an equivalent CFG.
                                                                                                  [L4,4M]
    b) Convert the following PDA into an equivalent CFG.
                                                                                                  [L4, 6M]
             \delta (q_0, a_0, z_0) \rightarrow (q_1, z_1 z_0)
             \delta(q_0,b,z_0) \rightarrow (q_1,z_2z_0)
             \delta(q_1,a,z_1) \rightarrow (q_1,z_1z_1)
             \delta(q_1,b,z_1)\rightarrow(q_1,\lambda)
             \delta(q_1,b,z_2) \rightarrow (q_1,z_2z_2)
             \delta(q_1,a,z_2) \rightarrow (q_1,\lambda)
             \delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) // \text{ accepted by the empty stack.}
8. a) Define push down automata? Explain acceptance of PDA with empty stack. [L2,5M]
    b) Define Instantaneous description (ID) in PDA.
                                                                                                  [L2, 5M]
9.
          a) Explain about the graphical notation of PDA.
                                                                                                  [L2,4M]
    b) Construct an equivalent PDA for the following CFG.
                                                                                                  [L3, 6M]
             S→aAB | bBA
             A→bS|a
             B \rightarrow aS \mid b.
10. Explain Deterministic Push down Automata with example?
                                                                                                  [L2, 12M]
```

ASSIGNMENT- V

1.	Construct a Turing machine which multiplies two unary numbers.	[L1,10M]
2.	Construct a Turing machine for Language L=a ⁿ _b , where n>0 [L1,10M]	
3.	Construct a Turing machine that recognizes the language L={a ⁿ b ⁿ , n>1}. Show an	n ID for the
	string 'aabb' with tape symbols.	[L2,10M]
4.	Explain conversion of regular Expression to TM with example.	[L3,10M]
5.	Explain the various types of Turing machine.	[L3,10M]
6.	Explain Universal turing machine	[L3,10M]
7.	a)Design a multi head Turing Machine for checking whether a binary string	g is a
	palindrome or not. Show the ID for 1001. [L3,6M]	
	b) Write about Universal TM.	[L3, 4M]
8.	Explain in detail about variations of the TM?	[L3,10M]
9.	Construct a Turing machine that recognizes the language a ⁿ b ⁿ c ⁿ .	[L3,10M]
10	a) Define PCP. Verify whether the following lists have a PCP solution.	[L3,7M]
	$\binom{abab}{ababaaa}$, $\binom{aaabbb}{bb}$, $\binom{aab}{baab}$, $\binom{ba}{baa}$, $\binom{ab}{ba}$, $\binom{aa}{a}$.	
	b) Describe linear bounded automaton.	[L3,3M]