SRINIX COLLEGE OF ENGINEERING, BALASORE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ASSIGNMENT ON DATA STRUCTURE

DATA STRUCTURE

Assignment-I

- 1. Explain how to sort the elements by using insertion sort and derive time complexity for the same. [12 M]
- Write a Routine for sorting elements using quick sort method. Explain the working of the routing with an example. [12 M]
- 3. Explain how to sort the elements by using selection sort and derive the time complexity for the same. [12 M]
- 4. Discuss the Algorithm of merge sort with an example. Derive its time complexity.

 [12 M]
- 5. Write and explain Bubble sorting Algorithm and also find its time complexity. [12 M]
- 6. Write and explain Radix sort algorithm with an example. [12 M]
- 7. What is searching? Explain Binary search algorithm with example and also find its time complexity. [12 M]
- 8. What is searching? Explain Binary search algorithm with example and also find its time complexity. [12 M]
- 9. Define hashing function. Explain any two Hashing functions with examples. [12 M]
- 10. Write a procedure for sorting a given list of elements using Quick sort method. Show the division of the list in the quick sort for a list of 10 numbers. [12 M]

Assignment-II

1.	What is linked list? Write and explain the algorithm for crate and traverse oper	rations in
	single linked list with example.	[12 M]
2.	What are the draw backs of single linked list? Write and explain the algorithm for	or search
	and modify operations in doubly linked list with example.	[12 M]
3.	a). Explain the advantages of linked list over arrays.	[6 M]
	b). Write algorithm for insert and delete a node from doubly linked list.	[6 M]
4.	a). Explain the circular linked list in detail.	[6 M]
	b). What is the draw backs of single linked list? Explain how to implement in	nsert and
	traverse operations in circular linked list.	[6 M]
5.	a). What is sparse matrix? Write an algorithm for implement sparse matrix.	[6 M]
	b). write an algorithm for insertion operation in circularly doubly linked list.	[6 M]
6.	What is Linked list? Explain applications of linked list.	[6 M]
7.	a). Discuss in detail about the polynomial representation.	[6 M]
	b). Explain with suitable example, the sort operation of single linked list.	[6 M]
8.	a). Explain the doubly linked list in detail.	[6 M]
	b). Explain creation and deletion operations in circular linked list.	[6 M]
9.	What is linked list? Write and explain the algorithm for crate, insertion and	traverse
	operations in doubly linked list with example.	[12 M]
10.	What are the draw backs of arrays? Write and explain the algorithm for se	arch and
	modify operations in single linked list with example.	[12 M]

Assignment-III

1.	a). Explain the solution to the towers of Hanol problem. Assume the number	er or
	disks as three.	[6 M]
	b). How to store the stack using arrays? Explain with example.	[6 M]
2.	Write a procedure to convert an infix expression into postfix form. Explain	it by an
	example.	[12 M]
3.	What is stack? Explain any two applications of stack with examples.	[12 M]
4.	What is stack? Write algorithm for operations of stack with examples.	[12M]
5.	What are the limitations of queue? Explain the algorithms for various oper-	ations of
	circular queue.	[12 M]
6.	Give brief description about the priority queues.	[12 M]
7.	What is double ended queue? Discuss the operations of Double ended queue	ie.[12 M]
8.	a). What are the applications of queue?	[6 M]
	b). How to store stack using linked list? Explain with example.	[6 M]
9.	What are priority queues? Explain in detail with example.	[12 M]
10.	a). Write a function that returns the ncr value using recursive function.	[6 M]
	b). Write any four applications of queues.	[6 M]

Assignment-IV

1. a). What is a binary search tree? How do you insert an element into a binary		ch tree?	
			[6 M]
		b). What is traversing? Write recursive procedure for in order traversal in a bina	ry tree.
			[6 M]
	2.	a). Explain how to delete an element from the binary search tree.	[6 M]
		b). Write recursive algorithm for pre order traversal.	[6 M]
	3.	a). Discuss threaded binary trees.	[6 M]
		b). Explain height balance tree.	[6 M]
	4.	Discuss about Red-Black and Splay trees.	[12 M]
	5.	Write insertion, deletion and searching operations on AVL trees.	[12 M]
	6.	Discuss B-Trees.	[12 M]
	7.	What is binary search tree? How to implement searching and insertion operation Binary search tree.	s on [12 M]
	8.	What is binary search tree? How to implement recursive traversal techniques on search tree. Discuss with an example.	binary [12 M]
	9.	What is B-tree of order m.? Write insertion and deletion operations on the same.	[12 M]
	10.	What is heap? Explain algorithm for heap sort with an example.	[12 M]

Assignment-V

1.	Explain DFS algorithm with example.	[12 M]
2.	Explain BFS algorithm with example.	[12 M]
3.	Discuss how to represent graph storage using Adjacency matrix.	[12 M]
4.	What is minimum -cost spanning tree? Discuss Prim's algorithm with example.	[12 M]
5.	What is minimum -cost spanning tree? Discuss Kruskal's algorithm with example	e.[12 M]
6.	Explain Dijkstra's algorithm with an example.	[12 M]
7.	Discuss Floyd's algorithm.	[12 M]
8.	With an example discuss Warshall's algorithm.	[12 M]
9.	Define graph. Explain various operations on graphs.	[12 M]
10	. Explain any algorithm for all pairs shortest path problem.	[12 M]