- 1. Ohm's law for magnetic circuits is ______
- а) F=фS
- b) F=φ/S
- c) $F=\varphi^2S$
- d) $F=\phi/S^2$

Explanation: Ohm's law for magnetic circuits states that the MMF is directly proportional to the magnetic flux where reluctance is the constant of proportionality.

- 2. What happens to the MMF when the magnetic flux decreases?
- a) Increases
- b) Decreases
- c) Remains constant
- d) Becomes zero

Explanation: Ohm's law for the magnetic circuit's states that the MMF is directly proportional to the magnetic flux hence as the magnetic flux decreases, the MMF also decreases.

- 3. Calculate the MMF when the magnetic flux is 5Wb and the reluctance is 3A/Wb.
- a) 10At
- b) 10N
- c) 15N
- d) 15At

Answer: d

Explanation: We know that:

F=φS

Substituting the given values from the question, we get MMF = 15At.

- 4. A ring having a cross-sectional area of 500 mm², a circumference of 400 mm and ϕ =800microWb has a coil of 200 turns wound around it. Calculate the flux density of the ring.
- a) 1.6T
- b) 2.6T
- c) 3.6T
- d) 4.6T

View Answer

Answer: a

Explanation: ϕ =BA => Flux density B = ϕ /A Substituting the values, we get B=1.6T.

5. A ring having a cross-sectional area of 500 mm², a circumference of 400 mm and φ=800microWb has a coil of 200 turns wound around it. Relative permeability of ring is 380. Calculate the reluctance.

- a) 1.68 * 10⁻⁴A/Wb
- b) 1.68 * 10⁴ A/Wb
- c) $1.68 * 10^6$ A/Wb
- d) 1.68 * 10⁻⁶A/Wb

View Answer

Answer: c

Explanation: Reluctance= $I/(\mu*A) = I/(\mu_r\mu_0*A)$ Substituting the values, we get Reluctance= $1.68*10^6$ A/Wb.

- 7. A ring having a cross-sectional area of 500 mm², a circumference of 400 mm and φ=800microWb has a coil of 200 turns wound around it. Relative permeability of ring is 380. Calculate the magnetising current.
- a) 6.7A
- b) 7.7A
- c) 7.6
- d) 6.1A

View Answer

Answer: a

Explanation: Reluctance = $I/(\mu*A) = I/(\mu_r\mu_0*A)$ Substituting the values, we get Reluctance S=1.68*106 A/Wb.

 $F=\phi S$ Substituting the given values, we get F=1344At.

I=F/N Substituting the values from the question, we get I=6.7A.

- 8. Can we apply Kirchhoff's law to magnetic circuits?
- a) Yes
- b) No
- c) Depends on the circuit
- d) Insufficient information provided

Explanation: Magnetic circuits have an equivalent to the potential difference of electric circuits. This is the magnetic potential difference which allows us to apply Kirchhoff's laws to magnetic circuit analysis.

- 9. What is MMF?
- a) Magnetic Machine Force
- b) Magnetomotive Force
- c) Magnetic Motion Force
- d) Magnetomotion Force

Explanation: MMF stands for magnetomotive force. Actually, it is not a force. It is analogous to potential in electric field.

- 10. The equivalent of the current I in magnetic ohm's law is?
- a) Flux
- b) Reluctance
- c) MMF
- d) Resistance

Explanation: The equivalent of current in magnetic ohm's law is flux as:

V=IR is equivalent to $F=\phi S$.

- The B/H characteristics can be determined using _____
- a) Ammeter
- b) Fluxmeter
- c) Voltmeter
- d) Multimeter

Explanation: The fluxmeter is an electronic display instrument used to measure the magnetic flux of permanent magnets hence it can be used to determine B/H characteristics.

- 2. The B/H curve can be used to determine?
- a) Iron loss
- b) Hysteresis loss
- c) Voltage loss
- d) Eddy current loss

Explanation: Hysteresis loss is basically a heat loss due to the reversal of magnetisation of the transformer core whenever it is subjected to a changing magnetic field. It can be determined using the B/H curve.

- 3. The B/H ratio is not constant for ______
- a) Diamagnetic materials
- b) Ferromagnetic materials
- c) Paramagnetic materials
- d) Non-magnetic materials

Explanation: As the magnetizing field increases, the relative permeability increases, reaches a maximum, and then decreases. Due to varying permeability, B/H ratio is not constant for ferromagnetic materials.

- 4. When using a fluxmeter, if the flux changes from Φ to -Φ, what happens to the current?
- a) Becomes zero
- b) Becomes infinity
- c) Remains the same
- d) Reverses

Answer: d

Explanation: When the flux changes from Φ to -Φ, the current direction will change as the direction of flux is changing.

- 8. Hysteresis loss is determined from _____
- a) B/H curve
- b) H/B curve
- c) BH curve
- d) B²H curve

Answer: c

Explanation: Hysteresis loss is basically a heat loss due to the reversal of magnetisation of the transformer core whenever it is subjected to a changing magnetic field. It can be determined using the B/H curve.

- 10. B/H curve shows the relationship between?
- a) Magnetic field strength and magnetic flux
- b) Magnetic field strength and magnetic flux density
- c) Current and magnetic flux density
- d) Voltage and magnetic flux density

Explanation: The B/H curve shows the relation between magnetic field strength and magnetic flux density.

- In case of Inductive circuit, Frequency is to the inductance.
- a) Directly proportional
- b) Inversely proportional
- c) Unrelated
- d) Much greater than

Explanation: The formula for frequency in an inductive circuit is:

 $X_L=2*\pi*f*L.$

Therefore: f is inversely proportional to L.

- 1. Among the following, which is the right formula for inductance?
- a) L=emf*t/l
- b) L=emf/t*I
- c) L=emf*I/t
- d) L=emf*t*I

Explanation: The average emf induced is proportional to the current per unit time, the constant of proportionality being L. Hence emf=LI/t. Making L the subject of the formula, we get L=emf*t/I.

- 2. Among the following, which is the right formula for inductance of N turns?
- a) L=et/Ni
- b) L=N*i *e*t
- c) L=Ni/et
- d) L=N/iet

Explanation: We know that:

emf=NLi/t

Inductance = L = et/N.

- 3. For a coil having a magnetic circuit of constant reluctance, the flux is _____ to the current.
- a) Directly proportional
- b) Inversely proportional
- c) Not related
- d) Very large compared to

Explanation: For a coil having a magnetic circuit of constant reluctance, the flux is directly proportional to the current.

- 4. For a coil having a magnetic circuit of constant reluctance, if the flux increases, what happens to the current?
- a) Increases
- b) Decreases
- c) Remains constant
- d) Becomes zero

Explanation: For a coil having a magnetic circuit of constant reluctance, the flux is directly proportional to the current. Hence as the flux increases, the current also increases.

- 6. If either the inductance or the rate of change of current is doubled, the induced e.m.f?
- a) Remains constant
- b) Becomes zero
- c) Doubles
- d) Becomes half

Answer: c

Explanation: If either the inductance or the rate of change of current is doubled, the induced e.m.f. becomes double because of emf=LI/t.

- 7. If the current changes from 5A to 3A in 2 seconds and the inductance is 10H, calculate the emf.
- a) 5V
- b) 10V
- c) 15V
- d) 20V

Explanation: We know that:

emf=L(i2-i1)/t

Substituting the values from the question, we get emf=10V.

8. If the current changes from 5A to 3A in x sec and inductance is 10H. The emf is 10V, calculate the value of x.

- a) 2s
- b) 3s
- c) 4s
- d) 5s

^ Vi

View Answer

Answer: a

Explanation: We know that:

emf=L(i2-i1)/t

Substituting the values from the question, we get x=2s.

- Reciprocal of reluctance is _____
- a) Permeance
- b) Susceptibility
- c) Resistance
- d) Conductance

Explanation: The reciprocal of reactance is permeance. It is the ability of a material to allow the passage of magnetic lines of flux.

- 2. Reluctance is ______ to the length of the material.
- a) Directly proportional
- b) Inversely proportional
- c) Not related
- d) Reluctance is ______ to the length of the material.

^ <u>View Answer</u>

Answer: a

Explanation: The formula for reluctance is:

 $S = I/\mu_0 \mu_r *A.$

From the formula, we can see that reluctance is directly proportional to the length of the material.

illacci iai.

- 3. Reluctance is ______ to the area of cross section the material.
- a) Directly proportional
- b) Inversely proportional
- c) Not related
- d) Equal

Answer: b

Explanation: The formula for reluctance is:

 $S = I/(\mu_0 \mu_r *A).$

From the formula, we can see that reluctance is inversely proportional to the area of cross section of the material.

- 9. If the current changes from 3A to 5A in 2s and the emf is 10V. Calculate the inductance.
- a) 10H
- b) 20H
- c) 30H
- d) 40H

Explanation: If the current changes from 5A to 3A in 2s and the emf is 10V. Calculate the inductance.

- 4. When the length of the material increases, what happens to reluctance?
- a) Increases
- b) Decreases
- c) Remains the same
- d) Becomes zero

Explanation: Reluctance is directly proportional to the length of the material hence as length increases, reluctance also increases.

- 5. When the area of cross section of the material increases, what happens to reluctance?
- a) Increases
- b) Decreases
- c) Remains the same
- d) Becomes zero

Explanation: Reluctance is inversely proportional to the area of cross section of the material hence as area increases, reluctance decreases.

- 6. Unit of reluctance is?
- a) AWb
- b) A²/Wb
- c) Wb/A
- d) A/Wb

Answer: d

Explanation: Reluctance is magnetomotive force per unit flux,

So unit of reluctance = unit of MMF / unit of magnetic flux = A/Wb.

- 7. The electrical equivalent of reluctance is?
- a) Resistance
- b) Inductance
- c) Capacitance
- d) Conductance

Explanation: Resistance is the opposition to the flow of charge, similarly reluctance is the opposition to the flow of magnetic flux.

- 8. As the magnetic field strength increases, reluctance?
- a) Increases
- b) Decreases
- c) Remains the same
- d) Becomes zero

Explanation: Reluctance is directly proportional to the strength of the magnetic field, hence as the strength of magnetic field increases, the reluctance increases.

- As the magnetic flux density increases, the reluctance
- a) Increases
- b) Decreases
- c) Remains the same
- d) Becomes zero

Explanation: Reluctance is inversely proportional to the magnetic flux density, hence as magnetic flux density increases, reluctance decreases.

- 10. Calculate the reluctance when the magnetomotive force is 10A turns and the flux is 5Wb.
- a) 0.5A/Wb
- b) 5A/Wb
- c) 10A/Wb
- d) 2A/Wb

Answer: d

Explanation: We know that:

F=φ*S

Substituting the given values from the question:

S=2A/Wb.

- Biot Savart law in magnetic field is analogous to which law in electric field?
- a) Gauss law
- b) Faraday law
- c) Coulomb's law
- d) Ampere law

Answer: c

Explanation: Biot Savart law states that the magnetic flux density H = I. dl $sin\theta/4\pi r^2$, which is analogous to the electric field $F = q1q2/4\pi\epsilon r^2$, which is the Coulomb's law.

- 2. Which of the following cannot be computed using the Biot Savart law?
- a) Magnetic field intensity
- b) Magnetic flux density
- c) Electric field intensity
- d) Permeability

Answer: c

Explanation: The Biot Savart law is used to calculate magnetic field intensity. Using which we can calculate flux density and permeability by the formula $B = \mu H$.

- 3. Find the magnetic field of a finite current element with 2A current and height $1/2\pi$ is
- a) 1
- b) 2
- c) 1/2
- d) 1/4

View Answer

Answer: a

Explanation: The magnetic field due to a finite current element is given by H = I/2 π h. Put I = 2 and h = 1/2 π , we get H = 1 unit.

- 4. Calculate the magnetic field at a point on the centre of the circular conductor of radius 2m with current 8A.
- a) 1
- b) 2
- c) 3
- d) 4

Answer: b

Explanation: The magnetic field due to a point in the centre of the circular conductor is given by H = I/2a. Put I = 8A and a = 2m, we get H = 8/4 = 2 units.

- 5. The current element of the solenoid of turns 100, length 2m and current 0.5A is given by,
- a) 100 dx
- b) 200 dx
- c) 25 dx
- d) 50 dx

Answer: c

Explanation: The current element of the solenoid is given by NI dx/L. Put N = 100, I = 0.5 and L = 2 to get, I dx = $100 \times 0.5 \times dx/2 = 25 dx$.

- 7. Find the magnetic flux density when a point from a finite current length element of current 0.5A and radius 100nm.
- a) 0
- b) 0.5
- c) 1
- d) 2

Answer: c

Explanation: The magnetic flux density is B = μ H, where H is given by I/2 π r. Put μ = 4π x 10^{-7} , I = 0.5 and r = 10^{-7} , we get B = 4π x 10^{-7} x $0.5/2\pi$ x 10^{-7} = 1 unit.

- The magnetic field intensity will be zero inside a conductor. State true/false.
- a) True
- b) False

Answer: b

Explanation: Electric field will be zero inside a conductor and magnetic field will be zero outside the conductor. In other words, the conductor boundary, E will be maximum and H will be minimum.

10. Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor.

- a) 1
- b) ∞
- c) 0
- d) -∞

View Answer

Answer: c

Explanation: The magnetic field of a circular conductor with point on the centre is given by I/2a. If the radius is assumed to be infinite, then $H = 12/2(\infty) = 0$.

25. Hysteresis loss least depends on

- A. Olume of material
- B. Frequency
- C. Steinmetz's coefficient of material
- D. Ambient temperature

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

17. Silicon steel is used in electrical machines because it has

- A.

 Low coercivity
- B. Low retentivity
- C. Low hysteresis loss
- D. High coercivity

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

18. If the area of hysteresis loop of a material is large, the hysteresis loss in this material will be

- B.

 Small
- C. Large
- D. None of the above

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

19. The unit of retentivity is

- A. Weber
- B. Weber/sq. m
- C. Ampere turn/meter
- D. Ampere turns

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

20. An air gap is usually inserted in magnetic circuits to

- A. Increase m.m.f.
- B. Increase the flux
- C. Prevent saturation
- D. None of the above

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

16. When both the inductance and resistance of a coil are doubled the value of

- A. Time constant remains unchanged
- B. Initial rate of rise of current is doubled
- C. Final steady current is doubled
- D. Time constant is halved

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

^

15. Reciprocal of reluctance is

- A. Reluctivity
- B. Permeance
- C. Permeability
- D. Susceptibility

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

14. A material for good magnetic memory should have

- A.

 Low hysteresis loss
- B.

 High permeability
- C. Low retentivity
- D. Migh retentivity

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

13. Permanent magnets are normally made of

- A. Alnico alloys
- B. Aluminium
- C. Cast iron
- D. Wrought iron

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

In a magnetic material hysteresis loss takes place primarily due to

- A. Rapid reversals of its magnetization
- B. Flux density lagging behind magnetizing force
- C. Molecular friction
- D. It high retentivity

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

10. Permeability in a m	nagnetic circuit
corresponds to	in an electric
circuit.	

- A. Resistance
- B. Resistivity
- C. Conductivity
- D. Conductance

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

11. A ferrite core has less eddy current loss than an iron core because

- A. Ferrites have high resistance
- B. Ferrites are magnetic
- C. Ferrites have low permeability
- D. Ferrites have high hysteresis

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

12. Conductance is analogous to

- A. Permeance
- B. Reluctance
- C. Flux
- D. Inductance

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

8. Relative permeability of vacuum is

- A. 1
- B. 1 H/m
- C. 1/4JI
- D. 4n × 10' H/m

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

6.	Those magnetic materials are best
	suited for making armature and
	transformer cores which have
	permeability and
	hysteresis loss.

- A. High, high
- B. Low, high
- C. High, low
- D. O Low, low

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

5.	Those materials are well suited for making permanent magnets which		
	have	retentivity and	
	coercivity.		

- A. Low, high
- B. High, high
- C. High, low
- D. Low, low

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

Laminated cores, in electrical machines, are used to reduce

- A. Opper loss
- B. Eddy current loss
- C. Hysteresis loss
- D. All of the above

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

View Answer

Answer: a

Explanation: Reluctance = $I/(\mu*A) = I/(\mu_r\mu_0*A)$ Substituting the values, we get Reluctance S=1.68*106 A/Wb.

 $F=\phi S$ Substituting the given values, we get F=1344At.

I=F/N Substituting the values from the question, we get I=6.7A.

- 8. Can we apply Kirchhoff's law to magnetic circuits?
- a) Yes
- b) No
- c) Depends on the circuit
- d) Insufficient information provided

^ <u>View Answer</u>

Answer: a

Explanation: Magnetic circuits have an equivalent to the potential difference of electric circuits. This is the magnetic potential difference which allows us to apply Kirchhoff's laws to magnetic circuit analysis.

- 9. What is MMF?
- a) Magnetic Machine Force
- b) Magnetomotive Force
- c) Magnetic Motion Force

1. While comparing magnetic and electric circuits, the flux of magnetic circuit is compared with which parameter of electrical circuit?

- A. _ E.M.F.
- B. Current
- C. Current density
- D. Conductivity

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

 Point out the wrong statement.
 Magnetic leakage is undesirable in electric machines because it

- A.

 Lowers their power efficiency
- B. Increases their cost of manufacture
- C. Leads to their increased weight
- D. Produces fringing

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution

3. The unit of magnetic flux is

- A. Henry
- B. Weber
- C. Ampere-turn/weber
- D. Ampere/metre

Answer & Solution

Discuss in Board

Save for Later

Answer & Solution